Response to Comment on: Tessari et al. Roles of Insulin, Age, and Asymmetric Dimethylarginine on Nitric Oxide Synthesis In Vivo. Diabetes 2013;62:2699–2708

نویسنده

  • Paolo Tessari
چکیده

I have read with interest the comment letter by Kruszelnicka et al. (1) to our article recently published in Diabetes (2). Their letter contains useful observations and raises interesting questions. One is about the dissociation of the metabolic sensitivity to insulin from endothelial nitric oxide (NO) release and its vascular protective effects, and the other is on the specificity of the assay of blood nitrates (both N-labeled and unlabeled) as indices of NO generation. In regards to the first issue, recent work by the Accili Laboratory, commented on by Kearney (3), report data on the dissociation between the metabolic and the vascular effects of insulin in the forkhead box class (FoxO)-deficient mouse model. The insulin signaling may diverge downstream of Akt, and this could explain tissue differences in the response to insulin in insulin-resistant states. These data provide a mechanistic view for the dissociation between the hormone effects also in vivo in humans. Caution is required however when translating data obtained in vitro to in vivo conditions, when multiple factors simultaneously operate. Even though the response(s) to insulin in individual tissues is uniformly affected, the presence of circulating inhibitors and/or regulators may alter the final responses to the hormone, as it could happen for asymmetric dimethylarginine in our study (2). As regards the second issue, nitrate concentration was measured by the Griess reaction, i.e., following reduction of nitrates to nitrites, whereas N-nitrate enrichment is measured following nitration of benzene (2,4). Some substances may interfere with these reactions, among them peroxynitrite. Such interference is potentially relevant in data interpretation. However, an increase in peroxynitrite should not affect N-nitrate enrichment because NO (including the [N]-labeled species) is very quickly and efficiently converted to peroxynitrite. This suggests an extensive equilibration between the two compounds, provided that a selective intracellular compartmentalization does not significantly occur. Conversely, as concerns the measurements of nitrate concentration by the Griess reaction, although peroxynitrite can theoretically be decomposed into hydroxyl radical and nitrogen dioxide, such a backreaction is a thousand-times slower than the formation of peroxynitrite (5). As a matter of fact, both nitrates and peroxynitrite are fairly stable, and this would exclude a significant interconversion between these two compounds either in circulating blood, or after blood withdrawal, centrifugation, and storage, and even less in the frozen samples. In conclusion, ours as well as other recently published articles challenge the somehow dogmatic concept about the existence of a uniform and comprehensive state of “insulin resistance,” a condition that should be considered multifaceted, and not defined just on the basis of the reduced insulin-mediated glucose disposal. This more complex view may have relevant consequences not only from a mechanistic but also from a therapeutic standpoint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on: Tessari et al. Roles of Insulin, Age, and Asymmetric Dimethylarginine on Nitric Oxide Synthesis In Vivo. Diabetes 2013;62:2699–2708

Tessari et al. (1) elegantly demonstrated—by a precursor-product stable isotope method— independent contributions of age, type 2 diabetes, and asymmetric dimethylarginine (ADMA) to impaired conversion of N-labeled L-arginine into nitrite and nitrate (NOx), products of nitric oxide (NO) metabolism. Interestingly, the authors observed no associations of any parameter of NOx kinetics with insulin ...

متن کامل

Roles of Insulin, Age, and Asymmetric Dimethylarginine on Nitric Oxide Synthesis In Vivo

We tested the effects of insulin on production of nitrous oxide (NO)-related substances (nitrites and nitrates [NOx]) after (15)N-arginine intravenous infusion and on asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) concentrations in conditions reportedly associated with altered NO availability, i.e., aging, hypertension, hypercholesterolemia, and type 2 diabetes mellitu...

متن کامل

Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy

An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in nitric oxide production during the development of diabetic nephropathy in type II diabetic Otsuk...

متن کامل

ON NO—The Continuing Story of Nitric Oxide, Diabetes, and Cardiovascular Disease

Nitric oxide (NO) is a simple chemical compound— 1 nitrogen and 1 oxygen atom coupled together— with complex biological actions (1,2). A singularly prominent feature of NO is its ability to cause vasodilation, a quality that is used pharmacologically when treating ischemic heart disease with NO precursors such as nitroglycerin. In 1980, Furchgott and Zawadzki (3) showed that vascular relaxation...

متن کامل

Plasma asymmetric dimethylarginine (ADMA) is associated with retinopathy in type 2 diabetes.

D ecreased availability of nitric oxide (NO), which contributes to the development of diabetes vascular complications (1), is partially related to asymmetric dimethylarginine (ADMA). ADMA is an endogenous NO synthase inhibitor (2) and a competitive inhibitor of cellular L-arginine uptake (3). ADMA has been associated with atherosclerosis in nondiabetic populations (4) and with diabetic nephropa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013